

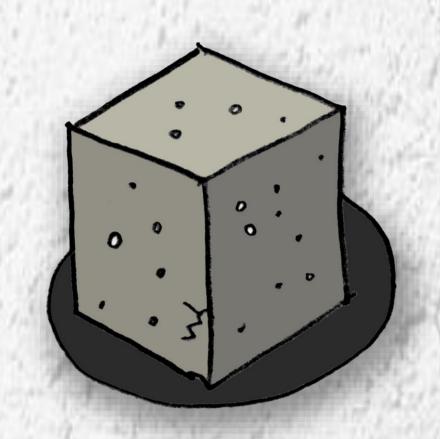





# UNIVERSITÄT GREIFSWALD Wissen lockt. Seit 1456



climate-change-greifswald.de


# Sustainable Cement

## - Future or Fiction? -

In the time it takes you to read this sentence, the global building industry will have poured out more than 7500 tons of concrete – an amount that would fill a whole Olympic swimming pool. This industry causes excessive environmental pollution as well as large-scale greenhouse gas emissions - up to 8% of all worldwide anthropogenic CO<sub>2</sub> emissions originate just from cement, environmentally speaking the most problematic part of concrete. <sup>1, 2, 7</sup>

But could one of the largest contributors to anthropogenic climate change actually be used in a more sustainable way?

### THE MATERIAL



#### What is cement and what is concrete?

After water, **concrete** is the most widely used substance on the planet - a simple mixture of aggregates (sand, stone or gravel), water and the binding material cement. **Cement** is made from calcium and silica-rich materials, such as limestone and clay. <sup>1, 2, 7</sup>

#### How is cement produced?

Cement is manufactured by heating finely ground **limestone**, clay and sand in a rotating furnace to temperatures reaching 1450°C. In the furnace, the limestone splits into **calcium oxide** and **CO<sub>2</sub>** and eventually turns into **clinker**. After another grounding the clinker is mixed with gypsum and limestone. <sup>2</sup>

## THE PROBLEM



# What makes the cement industry environmentally problematic?.

Besides the emissions caused by **fossil fuels** that are used in the heating process, a chemical process known as **calcination** inevitably releases **CO<sub>2</sub>** when limestone is burned into clinker. <sup>2, 3, 7</sup>

Associated problems like the high demand of concrete for water and sand as well as heavy air pollution around cement factories further increase the negative impact on the environment. <sup>1</sup>

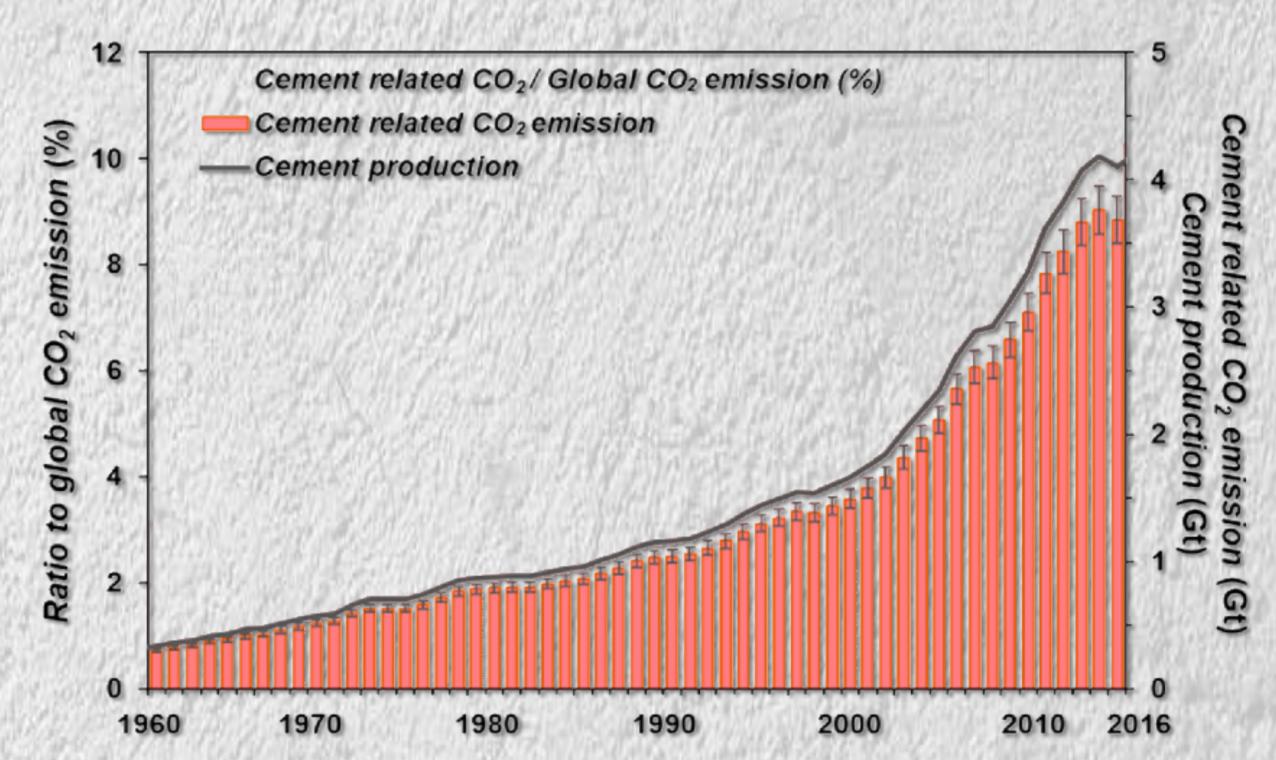



Fig. 1: Increase in CO<sub>2</sub> emissions related to the production of cement <sup>3</sup>

#### How can we produce and use cement in a more sustainable way?

Change is needed along the whole chain from production to usage. While  $CO_2$  emissions cannot be completely avoided, but there are several ways for reducing its environmental footprint.  $^{2,4}$ 

# THE SOLUTION



- Increase energy efficiency by using the excess heat from the production and more efficient machinery 4,6
- **Substitute fossil fuels** (coal, coke, oil, gas) with renewable energy to use in the heating process <sup>4, 6</sup>
- Reduce the 'clinker-factor' by partly replacing limestone with materials like slag sand or fly ash 4,6
- Use high-performance/carbon negative cements,
   which reduce the carbon footprint of concrete <sup>4</sup>
- Use direct CO<sub>2</sub>-emissions energetically or physically (for material recycling, carbon capture/CCUS) <sup>4</sup>
- **Recycle concrete** for reuse as aggregate <sup>6</sup>

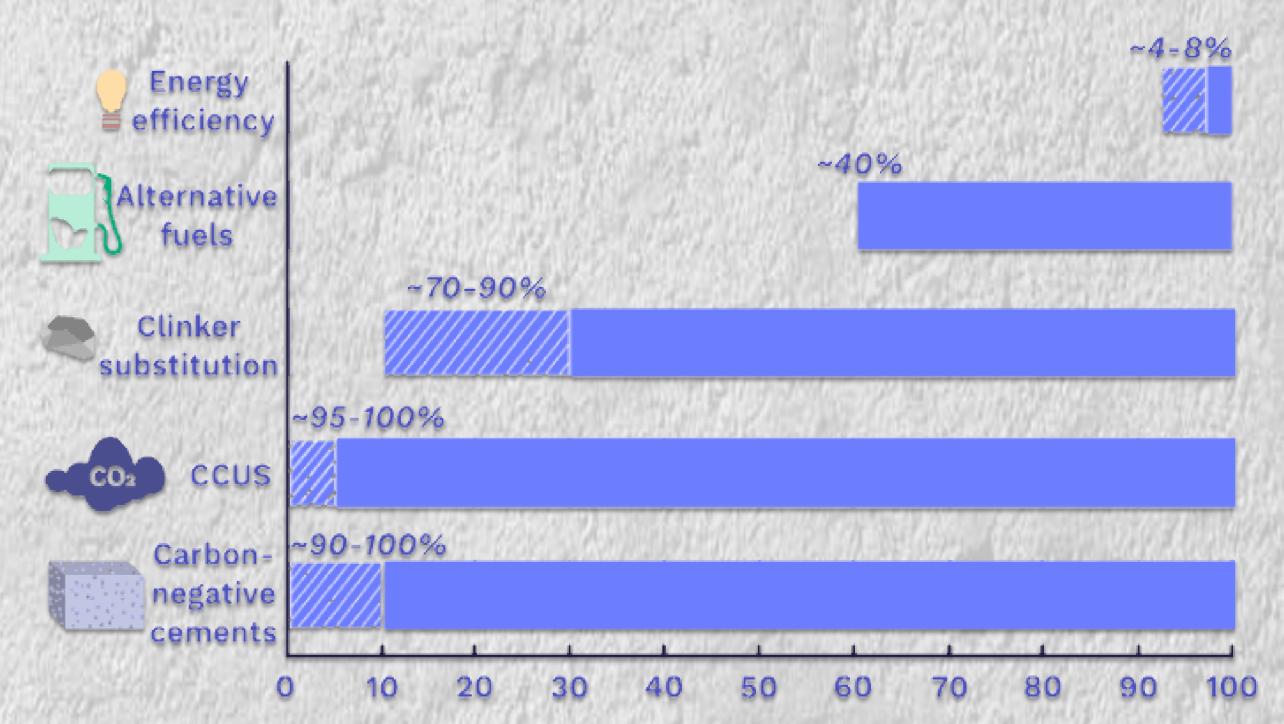



Fig. 2: Theoretical possible decarbonisation (in % of emissions) <sup>7</sup>

**However**, investment needs are high and investment cycles are long, considerably increasing the production costs which makes **sustainable cement** yet **unprofitable**. Without governments applying pressure on the industry or providing funding, this will not change in the near future. <sup>2, 4</sup>

#### References

- 1) Watts, Jonathan (2019), Concrete: the most destructive material on Earth, <a href="https://www.theguardian.com/cities/2019/feb/25/concrete-the-most-destructive-material-on-earth">https://www.theguardian.com/cities/2019/feb/25/concrete-the-most-destructive-material-on-earth</a> [last access 19.06.21]
  - Rodgers, Lucy (2018), BBC News. Climate Change: The massive CO2 emitter you may not know about. https://www.bbc.com/news/science-environment-46455844 [last access 20.06.21]
- 2) Chang, Ilhan; Lee, Minhyeong; Cho, Gye-Chun. (2019). Global CO2 Emission-Related Geotechnical Engineering Hazards and the Mission for Sustainable Geotechnical Engineering. Energies. 12. 2567. 10.3390/en12132567.
- 4) Umwelt Budesamt (2020), Dekarbonisierung der Zementindustrie, <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/factsheet\_zementindustrie.pdf">https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/factsheet\_zementindustrie.pdf</a> [last access 12.06.21]
- 5) Justnes, Harald (2015), How to make Concrete More Sustainable, Journal of Advanced Concrete Technology, Vol13, pp. 147-154
- 6) Umwelt Bundesamt (2020), Prozesskettenorientierte Ermittlung der Material- und Energieeffizienzpotentiale in der Zementindustrie, <a href="https://www.vdz-">https://www.vdz-</a>
  online.de/fileadmin/wissensportal/publikationen/forschungsergebnisse/Forschungsvorhaben\_Prozesskettenorientierte\_Ermittlung\_der\_Material-\_und\_Energieeffizienzpotentiale\_in\_der\_Zementindustrie.pdf</a> [last access 15.06.21]
- 7) Lehne, Johanna; Preston, Felix (2018) Making Concrete Change. <a href="https://www.chathamhouse.org/sites/default/files/publications/research/2018-06-13-making-concrete-change-cement-lehne-preston.pdf">https://www.chathamhouse.org/sites/default/files/publications/research/2018-06-13-making-concrete-change-cement-lehne-preston.pdf</a> [last access 20.06.21]